The sperm-oocyte switch in the C. elegans hermaphrodite is controlled through steady-state levels of the fem-3 mRNA.

نویسندگان

  • Simone Zanetti
  • Sonja Grinschgl
  • Marco Meola
  • Marco Belfiore
  • Samantha Rey
  • Pamela Bianchi
  • Alessandro Puoti
چکیده

Post-transcriptional control regulates many aspects of germline development in the Caenorhabditis elegans hermaphrodite. This nematode switches from spermatogenesis to oogenesis and is, therefore, capable of self-fertilization. This sperm-oocyte switch requires 3' UTR-mediated repression of the fem-3 mRNA. Loss of fem-3 repression results in continuous spermatogenesis in hermaphrodites. Although several factors regulating fem-3 have been identified, little is known about the mechanisms that control fem-3. Here, we investigate the steady-state levels of the fem-3 transcript and the expression pattern of its protein product. We show that FEM-3 is exclusively present in germ cells that are committed to spermatogenesis. We found that in fem-3(gf)/+ heterozygotes, mutant fem-3 gain-of-function transcripts are more abundant than their wild-type counterpart. Furthermore, we show that the penetrance of the fem-3(gf) allele correlates with inefficient FBF binding and extended poly(A) tail size of fem-3 mRNAs. Finally, we show that wild-type and gain-of-function mutated fem-3 mRNAs associate equally well with polyribosomes. We propose that the fem-3 mRNA is regulated through stabilization rather than through translatability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NANOS-3 and FBF proteins physically interact to control the sperm–oocyte switch in Caenorhabditis elegans

BACKGROUND The Caenorhabditis elegans FBF protein and its Drosophila relative, Pumilio, define a large family of eukaryotic RNA-binding proteins. By binding regulatory elements in the 3' untranslated regions (UTRs) of their cognate RNAs, FBF and Pumilio have key post-transcriptional roles in early developmental decisions. In C. elegans, FBF is required for repression of fem-3 mRNA to achieve th...

متن کامل

LARP-1 promotes oogenesis by repressing fem-3 in the C. elegans germline.

LA-related protein 1 (LARP-1) belongs to an RNA-binding protein family containing a LA motif. Here, we identify LARP-1 as a regulator of sex determination. In C. elegans hermaphrodites, a complex regulatory network regulates the switch from sperm to oocyte production. We find that simultaneous depletion of larp-1 and the Nanos homologue nos-3 results in germline masculinization. This phenotype ...

متن کامل

The mog-1 gene is required for the switch from spermatogenesis to oogenesis in Caenorhabditis elegans.

Caenorhabditis elegans hermaphrodites make first sperm, then oocytes. By contrast, animals homozygous for any of six loss-of-function mutations in the gene mog-1 (for masculinization of the germ line) make sperm continuously and do not switch into oogenesis. Therefore, in mog-1 mutants, germ cells that normally would become oocytes are transformed into sperm. By contrast, somatic sexual fates a...

متن کامل

The C. elegans sex determination protein MOG-3 functions in meiosis and binds to the CSL co-repressor CIR-1.

In the germ line of the Caenorhabditis elegans hermaphrodite, nuclei either proliferate through mitosis or initiate meiosis, finally differentiating as spermatids or oocytes. The production of oocytes requires repression of the fem-3 mRNA by cytoplasmic FBF and nuclear MOG proteins. Here we report the identification of the sex determining gene mog-3 and show that in addition to its role in game...

متن کامل

Repression by the 3' UTR of fem-3, a sex-determining gene, relies on a ubiquitous mog-dependent control in Caenorhabditis elegans.

The fem-3 sex-determining gene is repressed post-transcriptionally via a regulatory element in its 3' untranslated region (UTR) to achieve the switch from spermatogenesis to oogenesis in the Caenorhabditis elegans hermaphrodite germ line. In this paper, we investigate the fem-3 3' UTR control in somatic tissues using transgenic reporter assays, and we also identify six genes essential for this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA

دوره 18 7  شماره 

صفحات  -

تاریخ انتشار 2012